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Abstract

Across the world, the SARS-CoV-2 (COVID-19) pandemic has disproportionately
affected economically disadvantaged groups. This differential impact has numerous
possible explanations, each with significantly different policy implications. We ex-
amine, for the first time in a low- or middle-income country, which mechanisms best
explain the disproportionate impact of the virus on the poor. Combining an epidemi-
ological model with rich data from Bogotá, Colombia, we show that total infections
and inequalities in infections are largely driven by inequalities in the inability to work
remotely and in within-home secondary attack rates. Inequalities in isolation behav-
ior are less important but non-negligible, while access to testing and contract-tracing
plays practically no role. Interventions that mitigate transmission are often more
effective when targeted on socioeconomically disadvantaged groups.

Key words: COVID-19, inequality, infections, socioeconomic strata
JEL Classification: I14, I15, I18, O54
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determinan desigualdad en infecciones por

SARS-CoV-2

Rachid Laajaj†, Duncan Webb†, Danilo Aristizabal, Eduardo Behrentz, Raquel Bernal,
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gotá, Colombia, an-rami2@uniandes.edu.co; Restrepo: Universidad de Los Andes, Bogotá, Colombia,
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Resumen

En todo el mundo, la pandemia de SARS-CoV-2 (COVID-19) ha afectado de
forma desproporcionada a los grupos económicamente desfavorecidos. Este impac-
to diferencial tiene numerosas explicaciones posibles, cada una con implicaciones
poĺıticas significativamente diferentes. Examinamos, por primera vez en un páıs de
ingresos bajos o medios, qué mecanismos explican mejor el impacto desproporciona-
do del virus en los pobres. Combinando un modelo epidemiológico con ricos datos de
Bogotá, Colombia, mostramos que las infecciones totales y las desigualdades en las
infecciones están impulsadas en gran medida por las desigualdades en la incapacidad
de trabajar a distancia y en las tasas de ataques secundarios dentro del hogar. Las
desigualdades en el comportamiento de aislamiento son menos importantes, pero no
son insignificantes, mientras que el acceso a las pruebas y al seguimiento de los con-
tratos no desempeña prácticamente ningún papel. Las intervenciones que mitigan la
transmisión suelen ser más eficaces cuando se dirigen a grupos socioeconómicamente
desfavorecidos.

Palabras clave: COVID-19, desigualdad, infecciones, estrato socioeconómico
Códigos JEL: I14, I15, I18, O54



With around 127 million confirmed cases around the world as of early April 2021, the

COVID-19 pandemic has disproportionately affected disadvantaged groups. Evidence from

the USA, Europe, and developing countries suggests that within each country, poor and

minority groups are more likely to contract the disease Kim and Bostwick (2020), Figueroa

et al. (2020), Millett et al. (2020). In Bogotá, Colombia, we estimate that individuals in

the lowest socioeconomic strata (SES) are 3.7 times more likely to have been infected with

COVID-19 than those in the highest strata as of March 3rd 2021. Addressing inequali-

ties has been widely recommended to tackle the pandemic The Associated Press (2020),

Stiglitz (2020). Some studies have documented factors that are likely to affect COVID-19

transmission patterns, including access to testing and contact tracing services Klinkenberg

et al. (2006), Kucharski et al. (2020), Kretzschmar et al. (2020), Aleta et al. (2020), Grassly

et al. (2020), Flaxman et al. (2020), Schmitt-Grohé et al. (2020), biological factors related

to susceptibility and infectiousness Byrne et al. (2020), McAloon et al. (2020a), levels of

exposure at work Brandily et al. (2020), Almagro et al. (2020), circumstances within the

household Brandily et al. (2020), Almagro et al. (2020), Lee et al. (2020), Jing et al. (2020),

lockdown and social distancing Kucharski et al. (2020), Flaxman et al. (2020), Hellewell

et al. (2020), along with self-isolation behavior and compliance with regulations Flaxman

et al. (2020), Smith et al. (2020), Williams et al. (2020). These factors are likely to differ

by socioeconomic status, thereby driving inequality in COVID-19 infection rates across

socioeconomic groups Brandily et al. (2020), Schmitt-Grohé et al. (2020), Rocha et al.

(2021). Optimal policy design will vary significantly depending on which of these factors

is key: targeted policies that focus on high-risk groups will reduce both inequalities and

overall transmission more effectively if they concentrate on the most important dimen-

sions of inequality. However, no studies have so far been able to examine which factors

drive socioeconomic inequality in COVID-19 infections and compare how important each

one is for explaining overall inequality. We thereby provide the first study of a low- or
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middle-income country (LMIC) that (i) estimates the differences between socioeconomic

groups in characteristics that can explain inequality in COVID-19 infections, and then (ii)

incorporates these differences into an epidemiological model to tease out their impact on

the spread of the pandemic.

1 Differences in characteristics between socioeconomic

strata

We use primary data from the CoVIDA project led by the University of Los Andes, which

includes the results of 59,770 RT-PCR tests in Bogotá, targeted on a mostly asymptomatic

adult population from the beginning of June 2020 to March 3rd, 2021. We combine this

with administrative data from the Health Secretary of Bogotá (HSB) that covers all re-

ported cases in Bogotá (Supplementary Materials SI.1.1 includes a detailed data descrip-

tion). Both datasets include information on individuals’ socioeconomic stratum, a classifi-

cation commonly used as a proxy for economic welfare in Colombia. We use this six-level

measure to create four SES groups for analysis, ranging from poorest to richest: 1&2, 3,

4, and 5&6.

Together, these data allow us to estimate a set of characteristics that are likely to

determine infection rates, and to do so separately for each of the four socioeconomic groups.

Table 1 displays the values of these characteristics for each group (and Table SI.6 includes

standard errors, 95% CIs, source and estimation method). Throughout the paper, we

classify the determinants of inequalities in infection into 4 dimensions: (i) contacts outside

of the household, (ii) contacts within the household, (iii) isolation behavior, and (iv) testing

and tracing.

The number of non-work-related contacts outside the home does not differ significantly

across SES (p = 0.06). Secondary attack rate (SAR) for contacts outside the home also ex-
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hibits no significant differences across SES (p = 0.20), with the overall average is estimated

at 13%. This result is consistent with our finding that self-declared protection practices

are not systematically better among higher SES; lower SES even appear to compensate

for their inability to remain at home by wearing masks and using antibacterials more fre-

quently (Table SI.1). By contrast, there is a large and significant difference in the number

of days working outside of home during the 14 days prior to the survey, which varies from

2.5 days for SES 5&6 to 6.4 days for SES 1&2 (p < 0.001). This substantial difference is

likely to reflect the well-documented variation in the ability to work remotely Dingel and

Neiman (2020).

Characteristics related to infections inside of homes also reveal differences. First, mean

household size shows modest variation, from approximately 2.5 in wealthier households to

3 in poorer households (p < 0.001 for the difference). Lower SES individuals therefore

have more contacts within the household, which is known to be a particularly important

setting for transmission Lee et al. (2020). There is a substantial difference in the SAR

within household (p = 0.02), ranging from only 10% in SES 5&6 to around 27% in SES 1–

3. Corroborating this result, the positive correlation between household size and infection

probability is stronger for lower SES (Figure SI.9b), which may partly be explained by

more crowded housing conditions, since the poor have fewer rooms per household (Figure

SI.9c).

Self-reported isolation for individuals who have been tested positive is high (86%) and

does not vary significantly by SES (p = 0.61). Other high-risk circumstances that require

isolation, such as experiencing symptoms, lead to a substantial reduction in days worked

outside of home for all groups. But richer groups are able to restrict their working activity

in these circumstances significantly more than poorer groups.

Finally, access to testing and tracing could also affect infections if it leads to effective

quarantine and isolation. We find differences in testing and tracing characteristics across
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SES that may plausibly be explained by differing levels in health service quality that are

correlated with income Cifuentes et al. (2021). The likelihood of being detected conditional

on being infected varies substantially, from 15% in the SES 1&2 to almost double this in

SES 4–6. There are moderate differences in the average delay in test consultations and

results, which sum to 8.3 days for SES 5&6 and 9.5 days for SES 1&2. But average delays

across all groups are very long. They clearly exceed recommendations for an effective

Test, Trace and Isolate strategy, which suggest delays of no more than 5 days from onset

of symptoms to the results of the test Kretzschmar et al. (2020).

2 A theoretical model that emphasizes differences be-

tween socioeconomic groups

In order to quantify how the differences shown in Table 1 translate into differences in

COVID-19 infection patterns, we use the results as inputs for a novel branching-process

model of the spread of SARS-CoV-2. (See Tables SI.4 and SI.5 for a complete list and

description of the model parameters.)

The model is stochastic and individual-based, building on recent modelling work of

the pandemic Kucharski et al. (2020), Kretzschmar et al. (2020), Hellewell et al. (2020).

We structure the model by SES, allowing all parameter values found in Table 1 that are

significantly different at the 5% level to be SES-specific.

An example of a transmission process is shown in Figure 1. It demonstrates some of

the realistic features of the model, which include a distinction between contacts within

and outside the home, assortative mixing, symptoms, testing, contact tracing, isolation,

immunity, along with realistic distributions for all stochastically-generated timings.

Our baseline simulation of the epidemic uses the parameters as described in Tables

SI.4 and SI.5. Figure 2 shows the infection patterns in each SES, both using data from
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Bogotá (panels (a) and (d)) and comparing to the results of our model in the baseline

scenario. We use two variations of the model. In the first (panels (b) and (e)), the

average number of out-of-home contacts for each group stays constant over the course of

the epidemic, leading to a one-wave pattern. In the second (panels (c) and (f)), we account

for changes in mobility over time by scaling the number of out-of-home contacts by a

time-varying constant, calibrated to match total confirmed incidence (see Supplementary

Materials Section SI.1.3.4). This constant is the same for all groups, implying that all

predictions of inequality result from the differences in characteristics described in Section

1, rather than the calibration process.

Panel (a) displays the per capita incidence over the preceding 2 weeks for each group

based on data on confirmed cases from the Health Secretary of Bogotá. We see evidence

of inequality between groups, particularly in the first wave, where SES 1&2 reaches a peak

incidence rate of 0.72%, around double the level of SES 5&6. The model predictions of

confirmed cases, seen in panels (b) and (c), match this observed pattern relatively well,

with more detection of cases in the lower SES. The observed pattern of detected cases lies

within the range of the confidence intervals of both models for all groups in first wave

(Figure SI.10).

We also show that the model predictions match estimated inequalities in true infections,

estimated with the CoVIDA data, which is a sample of mostly asymptomatic individuals

and is thus less likely to be biased due to differential propensity to be tested. Panel

(d) shows that the inequality in estimated true infections is even starker than that of

confirmed cases: cumulative per capita incidence (during the entire period of the study)

varies from 69% in strata 1&2 to only 19% in strata 5&6. Because the model with no

mobility change (panel e) only captures the first wave of the epidemic, it underestimates

the cumulative incidence rate in all groups, but it yields a prediction of the proportion of

total cases that come from each SES (a proxy of inequality) that matches the CoVIDA
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data well (Figure SI.11). When accounting for mobility change (panel f), the model gives

very similar predictions to the CoVIDA data estimations, despite mobility being calibrated

on only aggregated confirmed cases, with a difference of 41 percentage points in cumulative

per capita incidence between the lowest and highest SES. Broadly, we are able to predict

the macro-level differences in infections well by introducing micro-level inequality across

SES into our epidemiological model.

3 Effects of an upward adjustment of inequalities in

the various dimensions on incidence of the virus

In order to identify the key channels that drive overall inequality in infections between SES,

we examine the effects of reducing inequality along 4 dimensions: (i) contacts outside of

the household, (ii) contacts within the household, (iii) isolation behavior, and (iv) testing

and tracing. For each of these dimensions, we first simulate a “100% upward adjustment”

scenario, in which the characteristics of all SES are set at the level of the highest SES

(5&6), and then a “50% upward adjustment” scenario (Figure 3), in which the differences

with respect to SES 5&6 are reduced by half.

First, we find that in a simulation in which all SES have as few contacts outside the

home as SES 5&6, the epidemic collapses, with a median cumulative incidence of less than

1% across all SES (column 2). This means that if every SES had the ability to work on

average only 2.5 days every 2 weeks outside of home, then the Rt would fall below one,

leading to a containment of the virus from early stages. When we adjust by only 50%,

there is still a marked reduction both in infections across all groups and in the inequality

between groups. This indicates that the differences in out-of-home contacts are a key driver

of the inequality in COVID-19 infections between groups.

Second, attributing the within-home characteristics of strata 5&6 to all strata (column
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3) leads to a reduction in infections that is as strong as the effect in the out-of-home sce-

nario. Further analysis demonstrates that this effect is mostly driven by differences in the

within-household SAR, while inequality in household size plays a significant but smaller

role (Figure SI.9). There may thus be large benefits to policies that reduce within-home

transmission for groups with crowded housing conditions, for example through recommend-

ing mask usage and social distancing within the home.

Third, we consider scenarios in which lower SES are just as able to isolate as SES 5&6

in high-risk circumstances (being in contact with or in the same household as a known

case, or when presenting symptoms) (column 4). This leads to moderate reductions in

infections and inequalities: for example, cumulative incidence among SES 1&2 would be

reduced by 8 percentage points in the 100% scenario. Differences in isolation behavior are

thus important, but contribute less to inequality in infections than the two previous chan-

nels. Reducing inequalities in isolation may nevertheless be more tractable for policy than

changing characteristics like housing conditions or job-types. For example, using financial

compensation to enable lower-income individuals to stay at home when symptomatic may

be an effective strategy.

Finally, the effect of improving access to testing and contact tracing among low SES

to the level of SES 5&6 has an effect on infections that is not significantly different from

0 (column 5). This is true despite the substantial inequality in access (see in Table 1).

The absence of effect can be explained by the fact that, on average in Bogotá, delays in

accessing testing, receiving results, and being contact traced are so severe across all groups

that testing and tracing has little effect at all in mitigating the spread of the virus in this

context.

The aim of these counterfactual scenarios is to build a quantitative understanding of

which channels of inequality are key for explaining inequality in COVID-19 infections.

However, the scenarios are not necessarily realistic. This leads to, for example, 100%
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upward-adjustment scenarios that imply rather extreme results. This is partly because the

model starts in the conditions of generalised lockdown in Bogotá, with an estimated Rq

number of 1.22 in the baseline scenario. Thus, any scenario that is sufficient to reduce this

Rq number to below 1 will lead to a total containment of the epidemic. In reality, mobility

restrictions may have been loosened sooner if this was the case, leading to more infections

than our model predicts. Such policy reactions, along with other relevant factors, such

as continued imports of the virus, are not included in our model. Another factor making

these scenarios more informative but less realistic is the fact that in our main results we

use the baseline model with no mobility change over time and a “one-wave” epidemic.

The model that allows for mobility change generates two epidemic waves, and while the

upward-adjustment scenarios lead to similar reductions in inequalities and infections during

the first wave, these reductions are offset by a larger second wave because immunity levels

are lower when the second wave begins (see Figure SI.15). The mobility-change model

is not more realistic, since it assumes, for example, that mobility would not have been

restricted even in cases of extremely high incidence rates in the second wave. Nevertheless,

the results provide a cautionary tale, common to many epidemiological models: measures

that successfully reduce infections may only delay an epidemic, rather than eliminate it.

In such a context, social inequalities may not predict who is more likely to get infected;

rather they predict who gets infected first.

4 The role of inequalities, and alternative policy sce-

narios

To further examine the role of socioeconomic inequality, we isolate the effect of a reduction

in inequalities, by reducing the dispersion of all the characteristics that were found to be

significantly different across SES while preserving the mean of each variable (Figure 4).
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We find that if these inequalities are fully collapsed, total infections would be reduced

from 38.2% to 35.9% of the population. The effect is moderate but statistically significant

(p < 0.001). Inequality in and of itself can lead to more widespread infection, even when

holding constant the average characteristics of the population.

We next examine simulations of policy-style scenarios that indicate (i) what types of

policies may be effective in combating the epidemic, and (ii) whether targeting policies

on low socioeconomic groups can reduce the spread of the virus. Figure 5 shows the

main results, while Figure SI.16 shows the results when varying the intensity of each

policy. The first set of simulations describes the results of (i) 10% population immunity

(e.g. due to vaccinations at an early stage), (ii) a reduction of 1 in outside-home contacts

(e.g. due to restricting economic activity, or a policy facilitating or enforcing remote

work), and (iii) an increase in ability to isolate (e.g. due to financial support for those

required to isolate). Increasing immunity and reducing out-of-home contacts lead to large

reductions in infections; increasing isolation leads to more modest effects. Even when

holding constant the number of beneficiaries, reductions are between 28% and 49% larger

when targeted on the lowest SES (p < 0.001 for all differences). This highlights that

policies are likely to be substantially more effective when targeted on socioeconomically

disadvantaged populations.

By contrast, increased access to testing for symptomatic individuals has only a small

impact on total infections, and this impact does not differ significantly if targeted or not.

Access to tests does not reduce infections in Bogotá, due to both severe delays across all

SES and limited initial coverage.

In keeping with this claim, even a complete removal of testing and tracing (the “No

testing” scenario) only increases the overall incidence rate by a mean of 1.0 percentage

points (p < 0.001), while increasing the speed of testing to an average of 2 days from

symptoms to detection results in a modest 4 percentage point reduction in incidence rate

9



from the baseline scenario. Combining this “Fast testing” scenario with an increase in the

probability of being tested leads to more substantial reductions in transmission, with the

overall incidence rate reducing to below 30%. Targeting the improvements in self-testing

on SES 1&2 leads to an additional mean reduction of 2.7 percentage points compared to

the non-targeted scenario (p-value of the difference= 0.04).

5 Discussion

This paper documents differences across SES along multiple dimensions that are relevant

to the spread of COVID-19. We provide one of the first studies that estimates the relative

importance of each form of inequality for explaining disparities in COVID-19 infections.

Such estimates are important to improve policy design. Disparities in types of jobs and

the ability to work from home are shown to be a key factor behind inequalities. Addi-

tional channels that have seen less emphasis in existing research include the major role

of differences in within-home SAR and inequalities in the ability to isolate when required

(in particular when one has symptoms, a detected individual in the household, or a recent

contact with a person tested positive). Finally, while poor individuals do have substan-

tially less access to tests, and a lower chance of being detected and traced, this does not

drive inequalities in incidence rates because testing and tracing in Bogotá is too slow to

contribute to the mitigation of the virus.

We find that improving the conditions of lower SES translates to a reduction in incidence

rate that is almost proportional across all groups. Despite some degree of assortative

mixing, in which each group is somewhat more likely to contact their own group, even the

highest SES benefit from improvements of the conditions faced by the lowest SES. This

supports the message that improving conditions for disadvantaged groups is necessary to

tackle the pandemic and would benefit the entire population.

10



Even when maintaining the same mean characteristics across the whole population,

a reduction in inequality can reduce the overall spread of the virus. As a consequence,

policy measures are likely to be more effective if they target disadvantaged socioeconomic

groups that are typically at higher risk. This would include targeting vaccine roll-outs

on these groups, but also targeting other non-pharmaceutical interventions. Our results

suggest placing a particular emphasis on (i) maximising the ability to work remotely for

lower socioeconomic groups where possible, or temporary and targeted economic shutdown

measures in the absence of other alternatives, and (ii) raising awareness that within-home

infections are a major source of transmission, but that this transmission may be avoidable,

and may be mitigated using within-house preventative measures such as mask use. Imme-

diate financial compensation for individuals required to isolate, including close contacts,

housemates of infected persons, and anyone with COVID-19-related symptoms, may also

be an important and tractable policy lever. Our results call for a rethinking of testing,

tracing, and isolation strategies in developing country contexts: although testing systems

provide valuable information about the spread of the virus, they may be so slow that they

have little mitigating effect on the transmission. In these cases, policymakers must be

transparent about testing delays, and consider a dramatic speed-up of the testing system

where feasible.

Our findings provide new evidence on the importance of different channels that drive

inequality in COVID-19 infections, and show that improving the circumstances of the most

disadvantaged groups, including by targeting interventions on the poor, can have benefits

for all. Inequalities must be addressed in order to better handle both the COVID-19 crisis

and potential future epidemics.

11



6 Figures

Results DelayConsultation Delay

Symptoms Test Results +ve

Isolated

In
fe

c
te

d

R
e

c
o

v
e

rs

Potential 
infections = 4

A
Immune

Outside of home contacts

1b:
Contact
Structure

Within home contacts
A

B

C

E

D

Tracking delaySymptoms

No test Results +ve

Not isolatedIn
fe

c
te

d

R
e

c
o

v
e

rs

Potential 
infections = 0

B

Results delayA detected

B traced Tested

Im
m

u
n

e
(w

a
s
 p

re
v
io

u
s
ly

 in
fe

c
te

d
)

C

Isolate from CT Deisolate

In
fe

c
te

d

R
e

c
o

v
e

rs

Potential 
infections = 5

D

A detected Results (Asymptomatic)

False -veD traced Tested

No contact

A detected

E not traced

Potential 
infections = 5

E

Symptoms

Isolate Test

Results +ve

ImmuneImmuneIn
fe

c
te

d

R
e

c
o

v
e

rs

Isolated

No contact

No contact

A

B C D E

Key
“Successful” infection

No contact due to isolation

No infection due to immunity

Detection event (symptoms, testing & tracing)

Testing/tracing delay

Start/end of isolation

Isolation interval

Individual doesn’t isolate

Potential infection is within household

1a:
Example
Infection
Progression

1c:
Infection
Tree

Figure 1. Visual representation of the theoretical model. An initial infection A potentially
infects four other individuals, called B, C, D, and E. 1a: A successfully infects B, D, and E. C
does not get infected by A because she has already been infected previously, and is thus immune
to further infections. A gets tested upon experiencing symptoms, and isolates upon receiving a
positive test result. This begins a process of contact tracing, through which B and D (but not
E) are tested. Individuals in the model may or may not be symptomatic, get tested, be contact
traced, and they may isolate for a variety of reasons. 1b: Each individual has contacts both
within the home and outside the home. Every individual within the home is a contact, and the
number of outside-of-home contacts is drawn from a negative binomial distribution. A contact
becomes a potential infection with a probability equal to the secondary attack rate, which differs
for within-home and outside-of-home contacts, and by SES. 1c: The infection tree summarises
the “branching process” in the model, i.e. the first and second generation potential infections
caused by A.
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Figure 2. Estimations of incidence rate using data and baseline simulations. Panels (a),
(b), and (c) show the per capita incidence over the previous 2 weeks based on confirmed cases
(those who test positive) for each SES at each date. Panel (a) is based on the administrative
data from the HSB on the number of confirmed cases at each date. Panel (b) is calculated
using the number of infected individuals that test positive in the model simulation with no
mobility change, while panel (c) uses the same calculation for the model simulation that allows
for mobility to change over the course of the epidemic (in a way that best predicts total detected
cases). Panels (d), (e) and (f) show the cumulative per capita incidence (including both confirmed
and unconfirmed cases) by the 3rd March 2021 (the most recent date for which the CoVIDA
data is available). Panel (d) uses positivity in CoVIDA data to calculate incidence, see Section
SI.1.1. Panel (e) and (f) includes all infections in the versions of the model without and with
mobility change respectively. All model results are calculated by taking the median value over
50 simulations. Model and actual dates are aligned by taking the model time period for which
the model-predicted 2 week total per capita incidence is the same as the actual value on June 1st
2020, and setting this time period to be June 1st 2020.
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Figure 3. Upward Adjustment Scenarios. Baseline indicates the model with the parameters
of Table 1 and no adjustment. The panels in columns 2 to 6 are the results of upward adjustment
scenarios. In the top row of columns 2 to 6 (100% adjustment), the set of parameters indicated in
the column heading is adjusted so that all SES have the same value as SES 5&6. In the bottom
row (50% adjustment), all SES other than 5&6 have their parameters adjusted to move halfway
to the value of 5&6. Parameters adjusted in each set are as follows: out of home (number
of contacts outside the home), within home (within-household SAR, household size), isolation
behavior (probability of isolating conditional on observing symptoms, testing positive, being
contact traced, and probability of quarantining as a household), testing & tracing (probability
of self testing, delay in test consultation, delay in test results, and probability of being contact
traced). Point estimates denote the median of 50 simulations. Error bars indicate the 0.025 and
0.975 quantiles of the 50 simulations.
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Figure 4. Mean-preserving reduction in inequalities. Describes the effect of reducing
inequalities in all parameters simultaneously while preserving the mean of all parameters. The
value of parameter k for an SES j in the baseline simulation can be written as vjk = vk + εjk,
where vk is the (population weighted) mean value for the parameter across all groups, and εjk
is some deviation. The graph plots the results of adjusting all parameters to the value v∗jk(λ) =
vk + (1 − λ)εjk. The outcome variable is the median cumulative per capita incidence across all
SES over the course of the entire simulated epidemic in 50 models with no mobility change. Error
bars indicate the 0.025 and 0.975 quantiles of the 50 simulations.
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Figure 5. Policy-style scenarios. In “Untargeted” scenarios, policy adjustments affect all
groups equally. In “Targeted” scenarios, only the parameters of SES 1&2 are adjusted, but
adjustments in this group are greater, such that the mean adjustment across the whole population
is the same as in the untargeted scenario. “10% initially vaccinated”: 10% of the population are
immune to the virus from the start of the epidemic. “Reduce outside-home contacts by 1”: mean
reduction of 1 in contacts outside the home. “Increase isolation by 20 p.p.”: mean increase of 20
percentage points in probability of isolating conditional on being symptomatic and being contact
traced. “Increase self-testing by 30 p.p.”: mean increase of 30 percentage points in the probability
of being tested after observing symptoms. “No testing”: probability of self-testing and of being
contact traced are set to 0. “Fast testing”: all tests have a consultation delay and a results delay
of 1 day. Outcome variable is the median cumulative per capita incidence across all SES for 50
simulated epidemics with no mobility change. Error bars indicate the 0.025 and 0.975 quantiles
of the 50 simulations.
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Table 1. Potential Determinants of Infection Estimated by SES

(a) All measures

Measure
SES Group Full p-val, diff.

between SESChannel 1&2 3 4 5&6 population

Infections

outside home

Days working outside home (in last 14 days) 6.4 4.8 3.2 2.5 4.6 <0.001

Number of non-work contacts outside home (in last 14 days) 1.108 1.392 1.506 1.423 1.314 0.063

Secondary attack rate (outside home) 15% 13% 8% 12% 13% 0.2

Contact matrix structure [see Panel (b)]

Infections inside

home

Household size 2.99 2.81 2.50 2.48 2.84 <0.001

Secondary attack rate (inside home) 26% 27% 24% 11% 26% 0.02

Isolation

behaviour

Isolation rate after positive test result 0.87 0.85 0.86 0.87 0.86 0.61

# days worked when has symptoms 3.03 2.29 2.4 1.5 2.6 <0.001

# days worked when knowing about positive contact 4.5 3.4 3.5 2.2 3.9 0.016

# days worked when someone is tested positive in same household 2.8 2.4 2.4 1.9 2.5 0.0040

Testing &

tracing

Share detected among positive 11.7% 15.2% 22.2% 21.3% 16.1% <0.001

Test consultation delay in days 5.56 5.59 5.41 5.26 5.55 <0.001

Test results delay in days 3.94 3.57 3.28 3.05 3.72 <0.001

Average number of contacts traced 1.73 1.74 1.75 1.75 1.74

Proportion of infections that are contact traced 81% 84% 88% 89% 83%

Population size in Bogota 4,063,470 2,857,861 757,923 365,459 8,044,713

Sample size in CoVIDA Survey Data 22,171 31,636 14,608 7,539 75,954

Sample size wih PCR test in CoVIDA Data 15,818 24,450 11,759 6,158 58,185

(b) Contact matrix

Contact stratum

Index case

stratum

1&2 3 4 5&6 Total

1&2 206 98 14 2 320

3 126 418 69 17 630

4 9 52 58 25 144

5&6 5 8 18 16 47

Total 346 576 159 60 1141

Panel (a): The table displays variables that capture various determinants of infection, sorted in four categories, followed by
population and sample sizes. It provides the average value for each SES and for the population all-together. The last column
presents the p-value of the F-test of difference between the 4 SES. A p-value below 0.05 means that one can reject at the
95% confidence level that the variable has population average that is equal for all SES (two-sided test). Standard deviations,
Confidence Intervals, data sources and explanations of the calculation methods are presented in Table SI.6. Panel (b): The
contact matrix enumerates the number of cases for each possible of combination of stratum of the index case and its contacts.
Positive cases in the CoVIDA study were traced, from this data, We use the self-declared stratum of the index cases and all
their non-household contacts to count the number of contacts within each cell.
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R., Buitrago, G., Cucunubá, Z., de la Hoz, F., Gaviria, A., Hernández, L. J., León, L.,

Moyano, D., Osorio, E., Ramı́rez Varela, A., Restrepo, S., Rodŕıguez, R., Schady, N.,
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Supplementary Information

SI.1 Materials and Methods

SI.1.1 Data Description

SI.1.1.1 CoVIDA Data

Our primary data comes from the CoVIDA project led by the University of Los Andes.
This community-based sentinel surveillance initiative was integrated with the district’s
public health surveillance and organized by occupation group. The CoVIDA project was
designed to help contain the spread of SARS-CoV-2 through active surveillance among
mostly asymptotic individuals and to provide a range of information that differs from
the self-selected symptomatic individuals tested in health facilities. The sample includes
59,770 RT-PCR tests of SARS-CoV-2 on 55,078 different individuals in Bogotá from the
beginning of June 2020 to March 3rd, 2021. At the time of registration, individuals were
surveyed to capture various characteristics, including occupation, socioeconomic stratum,
and address.

Two main strategies were employed to recruit participants, and approximately one
half of the total sample comes from each strategy. First, through 74 agreements with
institutions and companies, we obtained long-lists that we used to contact and invite
participants. Most lists were specific to a given occupation, based on the employees of a
large company or on a list of individuals who were signed up to a specific mobile app. We
also used some lists of residents based on beneficiaries of social programs. We randomly
selected participants from the lists and contacted them to invite them to be tested for free.
The total population of all lists covers 20% of the population in Bogotá. This means that
it is relatively close to a population-based sampling, but with an over-representation of
some occupations that were prioritized in the CoVIDA project, in particular because they
were expected to be more exposed (which is why we re-weight by occupation to maintain
representativity of actual occupations in Bogotá).

The second source of participants’ identification comes from public announcements
made by the CoVIDA team through various communication channels to invite people to
be tested, stating explicitly that the invitation is open to those that are asymptomatic.

For estimations of cumulative incidence with the CoVIDA data, we convert the posi-
tivity rate of CoVIDA tests into a number of daily new cases. To do this, we take into
account the estimated sensitivity of the RT-PCR tests, which implies that individuals can
be tested positive for a period of 17 days on average Miller et al. (2020). Hence in order to
obtain the number of cases per day and per inhabitant, one needs to divide the positivity
rate by 17. Intuitively, if, any person that gets infected can be tested positive during 17
days on average, then the positivity rate should be 17 times higher than the numbers of
daily new infections. See our companion paper Laajaj et al. (2021) for more details on this
calculation.
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Our second database comes from administrative records, collected by the Health Sec-
retary of Bogotá (HSB, in Spanish the Secretaria de Salud de Bogotá), that cover the
universe of cases of Bogotá residents that have been tested positive to SARS-CoV-2 by any
laboratory using an RT-PCR test, starting from the beginning of the pandemic (January
23rd, 2020) until February 14th, 2021. All laboratories in Bogotá must report any positive
test to the HSB, which in turn reports it to the National Health Institute that provides
national statistics used by the World Health Organization. This administrative data also
comes with basic socioeconomic characteristics from a form that is a mandatory part of
the institution’s report when recording a positive case to the HSB.

Both databases include information on an individual’s socioeconomic stratum, a classi-
fication that is based on the neighbourhood of residence and is commonly used in Colombia
as a proxy for the household’s economic living conditions. Neighborhoods are categorized
into one of 6 levels, where 1 is the poorest and 6 is the wealthiest. To gain power, we pool
together strata 1 and 2 and strata 5 and 6, leaving us with the four following groups: SES
1&2, 3, 4 and 5&6.

SI.1.2 Model details

In the model, each infected individual comes into contact with other individuals and poten-
tially infects them. An example of this process is seen in Figure 1. A potential secondary
infection is defined as a contact that would become infected unless prevented by immunity
or isolation. The stochastic number of potential secondary infections each infected person
generates depends on (i) whether they are symptomatic or asymptomatic, (ii) the number
of contacts they have during their infectious period, and (iii) the secondary attack rate.
We distinguish between contacts within the household and outside the household (Figure
1 panel (b)) and each type of contact has a different secondary attack rate. All members
within the household are assumed to be contacts and to be from the same SES. Contacts
from outside the household are sampled randomly from the entire population with sam-
pling weights that reflect our estimated contact matrix between SES (see Table 1b, Panel
b). The model therefore permits assortative mixing; contacts are typically more likely to
occur within a SES, but are not restricted to the same SES.

Potential infections may not translate into actual infections for two reasons. First,
because of immunity, a potential secondary case that has already been infected in the past
will not develop into a new infection (e.g. person C). Second, any out-of-home contact is
prevented if the individual is isolating at the time of the potential infection (while within-
home transmissions are unaffected by isolation). An individual may isolate for four reasons:
(i) after experiencing symptoms, (ii) after receiving a positive test result, (iii) after being
contact-traced, or (iv) if the entire household quarantines because one member received a
positive test result.

An individual may be tested either because they decide to take a test themselves after
experiencing symptoms (person A and person E in Figure 1), or because they are contact
traced. An individual who is “detected” (tests positive) is subjected to a process of contact-
tracing with a probability lower than 1, leading to the possible testing and detection of
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each of their secondary cases. For example, in Figure 1, A is detected, leading to B and D
(but not E) being traced and tested.

The model is based on a branching process structure. We initiate the model with
1/5000 of the population infected, and iterate over one-period cycles (that are equivalent
to one day). In each period, infected individuals can transmit the virus to others, and
other events such as isolation, testing, and tracing can also occur. These events, and how
they are simulated, are described in detail below. In all results, the model is simulated
with a total population of 100,000, and the proportion of initial cases in each SES is set
to be equal to the SES’s population as a proportion of total population. The parameters
used in the model are summarised in Table SI.4, which describes the parameters common
across all SES, and in Table SI.5, which describes the parameters that were potentially
allowed to differ by SES.

SI.1.2.1 Secondary Infections

Infected individuals come into contact with other simulated individuals. Contacts are
divided into two types, “household” and “external” (outside the household). The num-
ber of contacts within the household for individual i, δhhi , is assumed to be equal to
(householdsizei − 1). The number of contacts outside the household for an individual i,
δexti , is drawn from a negative binomial distribution with a dispersion parameter k = 0.58
(taken from Bi et al. (2020)) and a mean of µj, where j is i’s SES (see Figure SI.6). The
number of “potential” infections1 that i may generate in each category is then given by a
binomial distribution with size equal to the number of contacts and probability of infection
from the group-specific secondary attack rate (SAR):

pij
hh ∼ Binom(δhhi , SARhh

j )

pij
ext ∼ Binom(δexti , SARext

j )

People in the same household are assumed to be from the same SES. External contacts are
selected randomly from the wider population with sampling weights that depend on the
estimated contact matrix seen in Table SI.5, panel (b). This allows for phenomena such as
assortative mixing (i.e. individuals are more likely to encounter someone from their own
group).

SI.1.2.2 Symptoms

Based on data from a recent review Buitrago-Garcia et al. (2020), we assume that 20%
of infected individuals remain completely asymptomatic throughout the course of infec-
tion. We also follow this review in assuming that these individuals are less infectious than
symptomatics, with a relative risk of 0.35 (i.e. the secondary attack rate is 0.35× SARj).

1Potential infections are the number of infections that would happen, absent considerations of any isolation
behavior or immunity. Some potential transmissions will not take place because the infector is isolating
or because the potential infectee is immune.
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The remaining 80% of infected individuals present symptoms according to the timing de-
scribed in the next subsection. Symptomatic individuals may get tested upon observing
their symptoms (see the Section SI.1.2.5), whereas asymptomatic individuals will never get
tested through this channel.

SI.1.2.3 Timings

The incubation periods of both infector and infectee are both assumed to be distributed
lognormally with parameters drawn from a meta-analysis of the literature on the incubation
period for COVID-19 (µ = 1.63 and σ = 0.5) McAloon et al. (2020b).

The serial interval is assumed to be gamma-distributed with parameters α = 8.12, β
= 0.64 (and with the distribution function translated by ∆x = -7.5 to allow for negative
values), all taken from He et al. (2020). This distribution implies that 10.1% of serial
intervals will be negative. The mean serial interval is 5.2 days.

If the incubation periods and the serial interval are assumed to be independent, then
the implied generation interval is often significantly below 0, which is epidemiologically im-
possible. Therefore, to make the distributions of the incubation periods and serial interval
consistent with a realistic distribution of the generation interval, we allow for correlation
between the values of the two incubation periods and the serial interval. To do this, we first
draw values from a trivariate skewed-normal distribution Azzalini and work(s): (1996), Lee
and McLachlan (2013), and then transform the resulting variables to follow the lognormal
and shifted-gamma distribution described above. The variance-covariance matrix and the
skew parameters of the trivariate skewed-normal are chosen to match the resulting gen-
eration interval distribution to a gamma distribution with a mean of 5.2 days (the same
as the mean serial interval) and with a freely varying shape parameter. This ensures that
the generation interval is realistic and that negative generation intervals are rarely drawn.2

The matching process is carried out by numerically minimizing the Kolmogorov-Smirnoff
test statistic. The shape parameter of the gamma distribution is estimated to be 4.79. The
mean of the generation interval distribution, 5.2 days, is consistent with a recent meta-
analysis Challen et al. (2020), which estimated the mean generation interval to be 4.8 [95%
CI 4.3-5.41] when using a fitted gamma distribution. The estimation process results in a
shape parameter of 4.79. The probability distributions of all timing variables can be found
in Figures SI.2, SI.3, SI.4, and SI.5. All timing variables are assumed follow the same
distribution for both household infections and external infections.

SI.1.2.4 Immunity and isolation

A “potential” infection in the model may not become an actual new infection for three
reasons:

2In approximately 0.36% of cases, generation intervals less than 1 day are drawn using this procedure.
Secondary infections are assumed to only be possible 12 hours after infection, so in such cases we redraw
the incubation period and serial interval values using the same procedure until the generation interval is
greater than or equal to 1 day.
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1. The potential infectee has already been infected. All individuals who have been
infected once are assumed to be immune indefinitely.

2. The potential infector is isolating at the time of potential infection.

3. The potential infectee is isolating at the time of potential infection.

If the potential infectee or infector is isolating at the time of potential infection, then
this reduces the probability of infection to 0 for out-of-home infections, while leaving the
probability of within-home infections unchanged.

Potential infectors may isolate for one (or more) of 4 reasons:

1. Symptoms. Upon symptom onset, individuals will isolate with some probability that
depends on their SES.

2. Positive test result. Upon receiving a positive test result (see below), individuals will
isolate with some probability conditional on their SES.

3. Contact tracing call. Upon being told by a contact tracing team that they have been
in contact with an infected individual, individuals will isolate with some probability
conditional on their SES.

4. Household quarantine. A proportion ωj of households in each group j are quarantining-
types. This means that if at least one person in the household isolates because they
receive a positive test result, then all the members of the household also isolate for
the same period as the detected individual.

All the relevant probabilities can be found in Table SI.5.
Potential infectees also reduce transmission by isolating through the household quaran-

tining channel, although this plays a minor empirical role in reducing overall transmissions
in the model simulations. In most cases, isolating individuals stop isolating when they
recover, which is assumed to be 10 days after experiencing symptoms. However, there are
some cases in which individuals will “deisolate” before recovery. Deisolation occurs only in
the case when these conditions hold: (i) individual was isolating due to a contact tracing
call, (ii) the individual then receives a negative test result (either because they were tested
before they were infected, or because the test was a false negative), and (iii) the individual
is not isolating for any other reason. This feature of the model avoids overestimating the
efficacy of contact tracing in cases where tests are carried out very quickly.

SI.1.2.5 Testing and Contact Tracing

There are two reasons for which an individual can be tested in the model:

1. “Self” testing. Upon symptom onset (if symptomatic), individuals will be tested with
some probability conditional on their SES.
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Figure SI.1. Test Sensitivity (Source: Grassly et al 2020)
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2. Contact tracing. If an infected individual from group j is “detected” (is tested
positive), then everyone they infected has some probability π j to be called by a
contact tracing team and then tested themselves.

The relevant probabilities can be found in Table SI.5.
Tests are imperfectly sensitive, and test sensitivity is assumed to depend on time since

infection, following the data from Grassly et al. (2020) (see Figure SI.1, in which test
sensitivity increases rapidly over the first few days of infection and then decreases after
around day 5.

All testing processes include relevant delay times. The “test consultation delay” denotes
the time it takes for individuals to access a test after symptom onset (if they self-test).
The “test results delay” denotes the time it takes for results to be given to an individual
after they are tested (for all three types of test). And the “contact tracing delay” denotes
the time it takes to contact and test an individual after the original infector is detected
(these are assumed to take place simultaneously).

SI.1.3 Calibration exercises for out-of-home contacts

In order to calculate the full matrix of out-of-home contacts to be input into the model,
we first estimate the average number of non-work contacts outside the home for each SES
j (from individuals traced in the CoVIDA project), and add it to contacts due to working
outside of home, estimated from average number of days of work in a 14-day period for
group (from the full data) j. Together, it provides the average number of contacts of an
individual from group j, called µj. We then use the COVIDA contact tracing data to
infer the proportion of the contacts of an individual from group j that come from group k,
called qjk. This basically assumes that people are “missing at random” i.e. probability of
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Figure SI.2. Incubation Period

Lognormal

μ = 1.63, σ = 0.50

McAloon et al (2020)

0%

5%

10%

15%

0 5 10 15 20

Incubation Period (days)

D
e

n
s
ity

Figure SI.3. Serial Interval
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Figure SI.4. Implied Generation Interval
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Figure SI.5. Implied Infectiousness Profile
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Figure SI.6. Contacts outside of home (distribution)

Negative Binomial
k = 0.58 (Bi et al 2020)
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being missing is independent of the group. Together these pieces of information allow us
to calculate the full symmetric contact matrix ∆ that describes the number of contacts in
an average infectious period from group j to group k (absent any isolation behavior). The
steps carried out are described in more detail below.

SI.1.3.1 Contacts outside the home

We assume that the mean number of contacts an individual from group j has outside of
home during an average infectious period is given by µj, defined as:

µj(λ) = vj + λwj

Where vj is the mean number of non-work contacts from outside of home for group j, and
wj is the mean number of days of work for group j. Both of these are estimated directly
from the CoVIDA data (see Table 1) in the main text. λ is an unknown parameter (the
“work factor” ) that describes the relationship between the number of days at spent at
work and the number of out-of-home contacts during an infectious period (we assume this
relationship to be linear). We choose a value of λ by calibrating the model to the true
value of Rq estimated from the data. More specifically, we carry out the following steps:

1. For each candidate value λ0 in the set of candidate values {0.05, 0.1, 0.15, 0.2, . . . , 2.0}:

(a) Calculate the implied value of µj(λ0) .

(b) Use the values of µj(λ0) to calculate the implied full contact matrix ∆ using
the maximum likelihood process outlined in Section SI.1.3.2.

(c) Run 50 simulations of the first 100 periods of the model.
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(d) Use these simulations to calculate the implied value of Rq for this value of λ0

following the steps in Section SI.1.3.3. Call this Rq(λ0) .

2. Set λ equal to λ∗ , where λ∗ is the value of λ0 that minimizes |Rq(λ0) −R∗q| , with
R∗q being the true value of the basic reproduction number calculated based on the
real data using the methodology in Section SI.1.3.3.

3. Use ∆̂ML(λ∗) as calculated using the method in Section SI.1.3.2 as the value for the
contact matrix in the model simulations.

When we carry out the above steps in this way, we find that λ∗ = 0.8, implying that the
value for the work factor that best matches the observed growth in early cases in Bogotá’s
epidemic is 0.8. In other words, the model assumes that the mean number of out-of-home
contacts during the average infectious period increases by 0.8 with each additional day of
work outside of home.

Using this work factor, the estimated contact matrix based on the maximum likelihood
procedure in Section SI.1.3.2 for a population of 100,000 is:

∆̂ML(λ∗) =


272, 155 49, 440 5, 162 2, 432
49, 440 102, 967 16, 864 2, 729
5, 162 16, 864 8, 431 6, 022
2, 432 2, 729 6, 022 5, 247


The estimated ∆ matrix tells us the number of contacts that occur between each pair of

groups in an average infectious period (which is the same across all groups). For example,
the value in the first column and second row indicates that 49,440 contacts occur between
individuals of groups 1 and 2 (corresponding to SES 1&2 and 3 respectively) during an
average infectious period. Contacts are assumed to be mutual, so that the matrix is
symmetric. We can see from the estimation result that there is strong assortative mixing:
each group is more likely than random to contact another individual from the same group.
(Note that smaller values for the 3rd and 4th column are due to smaller population sizes in
these groups).

When using this estimated contact matrix ∆̂ML(λ∗), the estimated value of Rq(0.8) is
1.222, close to the estimated value in the data R∗q = 1.216 [95%CI : 1.170, 1.263]. We use

the matrix ∆̂ML(λ∗) as an input to the baseline simulations of the model seen in the main
results.

Another way of viewing this matrix is by looking at the proportion of contacts for an
individual from group j that are from group k:

Q̂(λ∗) := [qjk] =


0.827 0.150 0.016 0.007
0.287 0.599 0.098 0.016
0.142 0.462 0.231 0.165
0.148 0.166 0.367 0.319
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This tells us, for example, that 14.8% of the contacts of an individual from 4 come from
group 1. These values are then directly used in the model to set the probability that a
potential infection generated by someone from group j is from group k.

In the following section, we describe in detail the maximum likelihood process used
to estimate ∆̂ML(λ0) for each of the candidate values λ0 of the work factor. Then, in
Section SI.1.3.3 we describe the how we calculate the value of Rq both in the data (to
calculate R∗q ) and in the models (to calculate Rq(λ0) . Finally, in Section SI.1.3.4 we
describe the “mobility matching” process, in which we allow the ∆ matrix to be scaled by
a time-varying constant over the course of the epidemic in order to account for changes in
mobility in Bogotá.

SI.1.3.2 Maximum likelihood process for contact matrix

The aim of the following maximum likelihood process is to estimate the symmetric contact
matrix ∆ , where the element cjk describes the total number of out-of-home contacts (across
the whole population) between individuals from group j ∈ {1, 2, 3, 4} and individuals from
group k ∈ {1, 2, 3, 4} over the course of an average infectious period:

∆ :=


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44


Let µj be the mean number of out-of-home contacts for an individual from group j across
all groups during an average infectious period. For the purposes of this estimation process,
we assume that µ(λ0) := [µ1(λ0), µ2(λ0), µ3(λ0), µ4(λ0)]′ is given, because it has been
calculated in step (1a) in the previous section using a candidate value for the work factor

of λ0. What follows is thus the estimation process for ∆̂ML(λ0). We also treat as given
n := [n1, . . . , n4]′ where nj is the number of individuals in group j in the population,
because this is known from the data. Given µ(λ0) and n, we use maximum likelihood
to estimate the 6 remaining parameters of ∆, which we denote using the vector d =
[d11, d12, d13, d22, d23, d33]′.

The values cjk are filled out by the parameter vectors µ(λ0),n, and d. In particular,
we define ∆(d,µ(λ0),n) as the matrix with elements cjk defined in the following way:

1. First, the d vector directly specifies some elements of the ∆ matrix, so that:

cjk = djk for all djk ∈ d

2. Then, we enforce symmetry because contacts between each group are symmetrical
so happen at the same rate, so set :

ckj = djk for all djk ∈ d
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3. Finally, the last row and column are pinned down by the µ vector and the population
size since the sum of each row j in the ∆ matrix needs to sum to µjnj :

4∑
k=1

cjk = µj(λ0)nj

⇒ cj4 = µj(λ0)nj −
3∑

k=1

cjk for all j ∈ {1, 2, 3, 4}

To understand how we estimate the vector d, note first that the set of vectors {d,µ(λ0),n}
also pin down the probability qik that a given contact of a person from group i is from
group j, defined in the following way: qjk(d,µ(λ0),n) := Pr( Secondary contact is from
group k | Individual is from group j)

=
[∆(d,µ(λ0),n)]jk

µj(λ0)nj

We can use this probability to define the conditional likelihood function for d given the
contact tracing data we observe, and the known parameters µ(λ0) and n. The con-
tact tracing data is a set of observations of contacts from one group to another Z =
{(x1, y1), (x2, y2), . . . , (xM , yM)} , where xm ∈ {1, 2, 3, 4} denotes the group of an surveyed
infected individual and ym ∈ {1, 2, 3, 4} denotes the group of the reported contact (both
defined for m ∈ {1, . . . ,M}). (Each surveyed individual can have multiple reported con-
tacts, although this does not affect the estimation procedure.) The conditional probability
of observing a given observation pair (xm, ym) is given by:

Pr
(
Y = ym | X = xm; d,µ(λ0),n

)
= qxm,ym(d,µ(λ0),n)

So, assuming that the observations are independently and identically distributed, the con-
ditional likelihood of observing the entire dataset is:

L(d;Z,µ(λ0),n) =
M∏

m=1

qxm,ym(d,µ(λ0),n)

Therefore, to run the maximum likelihood estimation procedure, we input the values of
µj(λ0) from the procedure described in Section SI.1.3.1, along with the known values of n.
We then follow the maximisation programme below, maximising the log likelihood function
while imposing the constraint that all elements of ∆ are positive:

max
k

lnL(d;Z,µ(λ0),n) s.t. [∆(d,µ(λ0),n)]ij > 0 ∀i, j

We use the nloptr package in R Johnson (2020) to run this optimization numerically, using
a local COBYLA (Constrained Optimization BY Linear Approximations) algorithm. This
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Figure SI.7. Calculation of exponential growth rate of cases in early stage
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yields a maximum likelihood estimate of the full symmetric contact matrix, which we
denote ∆̂ML(d,µ(λ0),n), sometimes denoted ∆̂ML(λ0) for brevity.

SI.1.3.3 Calculating Rq

Here we calculate the value of Rq, which we define as the average number of secondary
infections generated by an infected individual at the start of the generalized quarantine
period under the assumption that the proportion of susceptible individuals is 1 (or very
close to 1). We treat this value as a constant in the early phase of the quarantine. To
calculate the value of Rq, we use the Lotka-Euler equation Wallinga and Lipsitch (2007).
This assumes exponential growth in new cases, assumes that all individuals in the popu-
lation are susceptible (S = 1), and uses the rate of exponential growth in new cases r and
the distribution of the generation interval g(a) to calculate an estimate of Rq.

First, we calculate the rate of exponential growth in new confirmed cases per day by
running an OLS regression with the natural log of daily confirmed cases as the outcome
variable, and the date as the independent variable. We limit our sample to the early period
of the epidemic April 1st 2020 to June 1st 2020, when the exponential growth curve fits
the data well and when immunity is unlikely to play a role in case growth because S ≈ 1.
This yields an estimate of r = 0.038 (95% CI: 0.031, 0.046). Figure SI.7 displays the log
daily confirmed new cases in Bogotá over time (the gray dots), and plots the line of best
fit (in red) whose slope is equal to r.

Then, we take the estimated generation interval from Figure SI.4, denoted g(a) where
a is the number of days since infection. This and use this to calculate the initial value of
Rq using the Lotka-Euler equation Wallinga and Lipsitch (2007):
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1

Rq

=

∫ ∞
a=0

e−rag(a)da

Where g(a) is the density of the generation interval as a function of the day since
infection a, r is the rate of exponential growth in new cases.

Using the values of r = 0.38 and the g(a) function from Figure SI.4, this yields an
estimate of R∗q = 1.216 [95%CI : 1.170, 1.263]. Note that this estimate comes during a
period of strict lockdown in Bogotá, which explains why our estimate of Rq is significantly
lower than the estimates of R0 seen in the literature (which are typically calculated in
conditions of full mobility Hilton and Keeling (2020)).

When calculating the Rq(λ0) values based on the model simulations, we carry out
exactly the same steps apart from the fact that we add simulation fixed effects to the OLS
regression for calculating r. This ensures that between-simulation variation in new cases
does not affect the estimates of the rate of the exponential growth in new cases.

SI.1.3.4 Mobility calibration

In some model specifications, we allow for changes in the number of out of home contacts
over time in the model, in order to account for changes in the level of mobility over time
in Bogotá (in particular due to changes in policies such as stay-at-home orders and other
mobility restrictions).

To do this, we allow for a generalized mobility factor m(t) to change over time through-
out the epidemic, so that at each time t, the contact matrix input into the model is equal
to:

∆̂ML(λ∗) ×m(t)

m(t) scales the contacts of all groups similarly, and does not lead to differential mobility
changes across groups through the course of the epidemic.

We estimate m(t) by using an iterative process to match the model predictions to the
observed pattern of new cases seen in Bogotá. This matching process calibrates the total
confirmed3 new cases in the model (summing all groups) to the total confirmed new cases
in the data (summing all groups). This means that any inequality between groups is a
result of the other parameters we input into the model described elsewhere. The precise
quantity used to match is the total (all group) per capita new confirmed cases per day,
smoothed by taking a 2-week rolling average. Call this quantity it Xk(t;m(t)) when it is
calculated from an individual simulation k. And call this same quantity Y (d) when it is
calculated from the data with dates d.

The iterative matching process follows the steps below:

1. Let m1(t) be 1 for all periods t.

3A case is deemed confirmed when an individual receives a positive test result (both in the model and the
data).
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Figure SI.8. Results of mobility calibration process

2. For iteration l in 1:20:

(a) Run a set of 100 simulations with the postulated values for ml(t) .

(b) Calculate the mean across all simulations of the smoothed number of per capita
new confirmed cases per day for each time t:

Xk(t;ml(t)) :=
1

50

50∑
k=1

Xk(t;ml(t))

(c) Match the model periods t ∈ { 0, 1, . . . } to real dates d by choosing a lower
bound date early in the epidemic (01/06/2020) and finding the time when new
cases per day is equal in the model and the data, i.e. when Y (d = 01/06/2020)
= Xk(t;ml(t)) . This defines the quantities Y (t).

(d) For all t after t corresponding to the lower bound date, calculate the deviation
quantity ∆(t) that indicates the extent to which the model predictions deviate
from the data:

∆(t) = ln
[
Xk(t;ml(t))

]
− ln [Y (t)]

To avoid sharp changes in mobility, we calculated a smoothed version of this
function ∆̃(t) by taking the 1 week rolling average of the deviations.

(e) Making use of the fact that the average time from infection to receiving positive
test results is approximately 3 weeks, we set the value of ml+1(t) in order to
account for the deviations from the 3 weeks later:

ml+1(t) = ml(t)− γ · ∆̃(t + 21)

where the adjustment factor γ was chosen to be 1/3, so that a 1 log deviation
at t+ 21 would lead to an adjustment of 1/3 on the value of ml+1(t) . We then
use this value of ml+1(t) as the input to step (a) for loop l + 1.

3. Use m20(t) as the final value for m(t) in the “mobility change” models.
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The results of this mobility-matching process, i.e. the values of m20(t), are plotted in
Figure SI.8.

SI.2 Figures
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Figure SI.9. Variation in within-household conditions across SES. Panel (a) shows the
mean household size for an individual in each SES. Panel (b) shows the mean number of rooms in
the household of an individual in each SES. Both (a) and (b) are derived from census data. 95%
confidence intervals are too small to be seen at this scale; all differences in means are significant
at the 1% level. Panel (c) shows the linear fit of the relationship between household size and the
probability of being infected conditional on being tested in the CoVIDA data by SES, with 95%
shaded confidence intervals. The slopes of the effect of household size on positivity for strata 1&2,
3, 4 and 5&6 are 0.56, 0.58, 0.13 and 0.13 respectively, The p-value of the F-test of difference
between these slopes is p=0.0033
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Figure SI.10. Model match based on confirmed cases with confidence intervals. This
shows the same results as panels (a), (b) and (c) in Figure 2. The dashed lines represent the
observed data on confirmed cases from the Health Secretary of Bogotá (HSB). The solid lines
represent the median predictions over 50 model simulations of per capita confirmed incidence.
The shaded intervals represent the 0.025 and 0.975 quantiles of the per capita confirmed incidence
over these same 50 model simulations.
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Figure SI.11. Share of cases from each group. The y-axis denotes the number of cumulative
cases from the specific SES shown divided by the total number of cumulative cases across all
groups. The solid line is the median, and the shaded areas denote the 0.025 and 0.975 quantiles
of the model results. The points and surrounding error bars are estimations from the CoVIDA
data, calculated using the methodology described in subsection SI.1.1.
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Figure SI.12. Detected cases compared to confirmed cases. Panel (a) shows the per capita
incidence over the last 2 weeks for confirmed cases (orange solid line) compared to all cases (blue
dashed lane). Data comes from the Health Secretary of Bogotá. Panel (b) shows the per capita
incidence by SES in the model simulations, using confirmed cases in the top row and all cases in
the bottom row. Note the differing scales on the Y-axes. All model results are the median for 50
simulations.
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Figure SI.13. Upward adjustment scenarios epidemic curves. Additional results of the
upward-adjustment scenarios, in which the parameters of all SES are adjusted to match the val-
ues of SES 5&6. The variable on the y-axis is the per capita incidence over the last 2 weeks in each
SES. Parameters adjusted in each set are as follows: out of home (number of contacts outside
the home), within home (within-household SAR, household size), isolation behavior (probability
of isolating conditional on observing symptoms, testing positive, being contact traced, and prob-
ability of quarantining as a household), testing & tracing (probability of self testing, delay in test
consultation, delay in test results, and probability of being contact traced).
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Figure SI.14. Upward adjustment scenarios when changing within-home SAR and
household size. Results of additional upward-adjustment scenarios, in which the parameters of
all SES are adjusted to match the values of SES 5&6. “Within-home” adjusts both household size
and within-home SAR. “HH size” and “SAR Home” adjust only the single named parameter at a
time. Panel (a) shows the two-weekly incidence for each group in each of the upward adjustment
scenarios. Panel (b) shows the overall cumulative incidence for each group in these scenarios.
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Figure SI.15. Upward adjustment scenarios with mobility change. Panel (a) shows the
two-weekly incidence for each group in each of the upward adjustment scenarios. Panel (b) shows
the overall cumulative incidence for each group in these scenarios. Apart from in simulations
where the epidemic is completely contained (e.g. Out of home (100%) and Within home (100%)),
reductions in transmission early on in the epidemic lead to much more severe second waves,
leading to little overall change in the overall cumulative incidence.
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Figure SI.16. Targeted and untargeted policies with varying intensity. The outcome
variable in all cases is the cumulative per capita incidence over the course of the whole epidemic
for models with no mobility change. In “Targeted” scenarios, only the parameters of SES 1&2 are
adjusted, but adjustments in this group are greater, such that the mean adjustment across the
whole population is the same as in the untargeted scenario. Panel (a): outside-of-home contacts
are reduced by 1, 2, and 3 relative to baeline scenario. Panel (b): 10%, 20% and 30% of the
population are immune to the virus from the start of the epidemic. Panel (c): mean increase of
10 and 20 percentage points in select isolation parameters (probability of isolating conditional on
being symptomatic and being contact traced). Panel (d): mean increase of 10, 20, 30, and 40
percentage points in tehthe probability of being tested after observing symptoms. 0% fast testing
indicates the same testing delays as in the baseline scenario. 100% fast testing indicates that all
tests have a consultation delay of 1 day and a results delay of 1 day. The estimates represent the
median of 50 simulations, while the confidence intervals represent the 0.025 and 0.975 quantiles
of these simulations.
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SI.3 Tables

Table SI.1. Self-declared prevention practices

Dependent vari-
able:

No Trips
(last 14
days)

Frequency
of hand
washing

Duration of
hand

washing

Frequency
of mask
usage

Frequency
of antibac-

terial
usage

Stratum 3 -0.041*** 0.028*** 0.0093 -0.034*** -0.00078
[0.0029] [0.0093] [0.0088] [0.0050] [0.0085]

Stratum 4 -0.093*** 0.060*** 0.0065 -0.095*** -0.066***
[0.0040] [0.011] [0.011] [0.0068] [0.010]

Strata 5&6 -0.13*** 0.051*** -0.045*** -0.13*** -0.067***
[0.0054] [0.014] [0.013] [0.0090] [0.013]

Constant 0.89*** 2.83*** 3.00*** 3.77*** 2.78***
(Mean SES 1&2) [0.0021] [0.0072] [0.0069] [0.0037] [0.0066]

Observations 74,345 74,613 74,612 74,544 74,467
p-value of F-test of
joint significance

0 0.0000005 0.00016 0 0

Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1, all p-values and F-test are double-
sided tests. Linear regressions. The outcome variable “No trips” is a dummy indicating that the individual
didn’t take any trips in the 14 days preceding the survey. Outcome variables in columns 2 to 5 are
transformed into an index from 1 to 4 where higher values of the outcome variable always means higher
level of protection. The last line presents the p-value of the joint significance of the three SES dummies
in the regression, hence it tests the nul hypothesis that the average value of the outcome variable is the
same for all SES.
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Table SI.2. Number of days worked outside home as a function of sickness and SES

Days worked outside
home (in last 14 days)

Stratum 3 -0.65*
[0.33]

Stratum 4 -1.12***
[0.39]

Strata 5&6 -2.13***
[0.46]

Strata 1&2 × fraction sick -1.92***
[0.52]

Stratum 3 × fraction sick -2.01***
[0.37]

Stratum 4 × fraction sick -1.43**
[0.57]

Stratum 5&6 × fraction sick -1.32
[0.83]

Constant 4.95***
(Mean for SES 1&2 if 0 days sick) [0.27]

Observations 6,798

Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1, all p-values and F-test are
double-sided tests. The sample is restricted to individuals that have been sick for at least one day
and observations are weighted by occupation. Linear regression where the explained variable is the
respondent’s answer to the question “In the last 14 days, how many days have you worked outside
of home?”. “fraction sick” is equal to the number of days with symptoms in the past 14 days / 14;
it goes from 0 to someone who had no symptoms to 1 for someone who had symptoms during the
past 14 days.
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Table SI.3. Statistical predictions of the number of days worked using results from Table SI.2

Stratum Prediction if 0
days sick

Prediction with
14/14 days sick

1 & 2 4.95 3.03
3 4.30 2.29
4 3.83 2.40
5 & 6 2.82 1.50

Example of calculations of statistical linear predictions, for stratum
3: 4.95 -0.65 = 4.30 provides the average number of days worked for
a person in stratum 3 if the person was sick during 0 days out of 14.
4.95 -0.65 -2.01 =4.30 provides the average number of days worked
for a person in stratum 3 if the person was sick during 14 days out
of 14. The difference (-2.01) is the effect of being 14 days sick on the
number of days worked for stratum 3.

Table SI.4. Model parameters common across all SES

Model Parameter Value Source

Proportion of asymptomatic infections 20% Buitrago-Garcia et al. (2020)

Asymptomatic Relative Risk 35% Buitrago-Garcia et al. (2020)

Out-of-home contacts distribution Negative binomial with k = 0.58 Bi et al. (2020)

Incubation period distribution Lognormal with µ = 1.63 and σ = 0.5 McAloon et al. (2020)

Serial interval distribution Gamma with α = 8.12, β = 0.64, and
translated by ∆x = -7.5

He et al. (2020)

Generation interval distribution Empirical distribution matching
gamma with mean of 5.2 days, shape
= 4.72

Inferred from incubation and serial in-
terval distribution

Test sensitivity distribution Empirical distribution Grassly et al. (2020)
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Table SI.5. Model parameters for each SES

(a) Parameter Summary

Model Parameter
SES

Source / Construction
1&2 3 4 5&6

P(Self Test|Symptoms) 0.188 0.244 0.356 0.341 d/((1 − A)(1 − F )) where d = share detected among
positive from Table SI.6, A = share of asymptomatics
in the model (20%), F is the estimated share of false
negatives in a typical model (22%)

P(Isolation|Symptoms) 0.526 0.520 0.261 0.395 1−(ws/w), where ws = the avg. number of days worked
after having been sick for 14 days, inferred from Table
SI.3, and w is the avg. number of days worked

P(Isolation|Contact traced) 0.300 0.290 0.000 0.106 1−(wct/w), where wct = the avg. number of days worked
when individual knows about contact with an infected
person We assume this is weakly greater than 0

P(Isolation|Test) 0.858 0.858 0.858 0.858 1− (wt/w), where wt = the avg. number of days worked
when an individual has received a positive test

P(Household quarantine) 0.561 0.503 0.270 0.254 1 − (whh/w), where whh = the avg. number of days
worked when someone in the same household is tested
positive (does not vary by SES)

P(Contact traced) 0.189 0.227 0.291 0.325 c/(n + λ∗w), where c = average number of contacts
traced from Table SI.6, n = Number of non-work con-
tacts outside of home from Table 1, λ∗ = 0.8 outside
work factor as described in Section 3, and w is days
worked outside of home in Table 1

SAR (Home) for symp-
tomatics

0.146 0.146 0.146 0.146 SARhh/(ρA+ (1−A)) where SARhh = estimated SAR
(Home) from Table SI.6, ρ = the relative risk of asymp-
tomatics (0.35), A is the share of asymptomatics (20%)

SAR (Outside home) for
symptomatics

0.303 0.310 0.270 0.121 SARout/(ρA+(1−A)) where SARout = estimated SAR
(out) from Table SI.6, ρ = the relative risk of asymp-
tomatics (0.35), A is the share of asymptomatics (20%)

K matrix [See Panel (b)] Estimated using process seen in Section SI.1.3.1

Household size [full distribution used] Observed distribution from census data

Test consultation delay [full distribution used] Observed distribution from HSB data

Test results delay [full distribution used] Observed distribution from HSB data

Contact tracing delay [full distribution used] Assumed to be same for all SES groups and drawn from
the observed distribution for test consultation delays

(b) K matrix

Index Case SES
Contact Case SES

1&2 3 4 5&6 Total

1&2 272,155 49,440 5,162 2,432 329,190
3 49,440 102,967 16,864 2,729 172,000
4 5,162 16,864 8,431 6,022 36,480
5&6 2,432 2,729 6,022 5,247 16,430

Total 329,190 172,000 36,480 16,430 554,100
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